Part 1: Computer Organisation

e Some history, see also:
IEEE-CS history timeline to 1996 (with pictures)

http://computer.org/history/development/index.html

(and IEEE Computer, October 1996)

[]

Computer Lab web pages

Operation of a simple computer

Representation of information

— text - source code, documents, data
— instructions - for object code
— numbers

1/0, devices, interrupts, DMA

@ OS Fdns Part 1: Computer Organisation —

The Von Neumann Architecture

Memory

Arithmetic
Control Logical Unit 4

Unit _.| Output

/

Accumulator

e 1945: ENIAC (Eckert & Mauchley, U. Penn):

30 tons, 1000 square feet, 140 kW,

18K vacuum tubes, 20x10-digit accumulators,
100KHz, circa 300 MPS.

Used to calculate artillery firing tables.

(1946) blinking lights for the media. . .

e But: “programming” is via plugboard = v. slow.
e 1945: von Neumann drafts "EDVAC" report:

— design for a stored-program machine
— Eckert & Mauchley mistakenly unattributed

@ OS Fdns Part 1: Computer Organisation — Foundations

A Chronology of Early Computing
(several BC): abacus used for counting
1614: logarithms invented (John Napier)
1622: invention of the slide rule (Robert Bissaker)
1642: First mechanical digital calculator (Pascal)
Charles Babbage (U. Cambridge) invents:

— 1812: “Difference Engine”
— 1833: “Analytical Engine”

1890: First electro-mechanical punched card
data-processing machine (Hollerith, later IBM)

1905: Vacuum tube/triode invented (De Forest)
1935: the relay-based IBM 601 reaches 1 MPS.

1939: ABC — first electronic digital computer
(Atanasoff & Berry, lowa State University)

1941: Z3 — first programmable computer (Zuse)
Jan 1943: the Harvard Mark | (Aiken)

Dec 1943: Colossus built at ‘Station X', Bletchley
Park (Newman, Wynn-Williams, Turing et al).

@ OS Fdns Part 1: Computer Organisation — Foundations 2

Further Progress. . .
1947: “point contact” transistor invented
(Shockley, Bardeen & Brattain, Bell Labs)

1949: EDSAC, the world's first (=) stored-program

computer (Wilkes & Wheeler, U. Cambridge)

— 3K vacuum tubes, 300 square feet, 12 kW,

— 500KHz, circa 650 IPS, 225 MPS.

— 1024 17-bit words of memory in mercury
ultrasonic delay lines.

— 31 word “operating system” (1)

1954: TRADIC, first electronic computer without

vacuum tubes (Bell Labs)

1954: first silicon (junction) transistor (TI)

1959: first integrated circuit (Kilby & Noyce, TI)

1964: IBM System/360, based on ICs.

1971: Intel 4004, first micro-processor (Ted Hoff):

— 2300 transistors, 60 KIPS.

1978: Intel 8086,/8088 (used in IBM PC).
~ 1980: first VLSI chip (> 100,000 transistors)

Today: ~ 40M transistors, ~ 0.18u, ~ 1.5 GHz.

@ OS Fdns Part 1: Computer Organisation — Foundations

Languages and Levels

Level4 C/C++ Source Java Source

compile
Level 3 |—. ASM Source Bytecode

assemble Other Object nterpret
Levelz Object File Files ("Libraries")
link
Level 1 E ble File execute
eve ("Machine Code")

e Modern machines all programmable with a huge
variety of different languages.

e e.g. ML, java, C++, C, python, perl, FORTRAN,
Pascal, scheme, . ..

e We can describe the operation of a computer at a
number of different levels; however all of these
levels are functionally equivalent

@ OS Fdns Part 1: Computer Organisation — Abstraction 5

Registers and the Register File

RO 0x5A| R8 OxXEAO2D1F
R1 0x102034 R9 0x1001D
R2 0x2030ADCB R10 OxFFFFFFFF
R3 0x0 R11 0x102FC8
R4 0x0 R12 0xFF0000
R5 0x2405 R13 0x37B1CD
R6 0x102038 R14 0x1
R7 0x20 R15| 0x20000000

Computers all about operating on information:

[]

@ OS Fdns Part 1: Computer Organisation — Anatomy of a Computer

information arrives into memory from input devices

memory is a essentially large byte array which can
hold any information we wish to operate on.

computer logically takes values from memory,
performs operations, and then stores result back.

in practice, CPU operates on registers:

— a register is an extremely fast piece of on-chip

memory, usually either 32- or 64-bits in size.

modern CPUs have between 8 and 128 registers.

— data values are loaded from memory into
registers before being operated upon,

— and results are stored back again.

A (Simple) Modern Computer

Processor

Register File
(including PC)
Memory

Cont'rol Execu_tion e.g. 64 MByte
Unit Unit A6 x 8 =
536,870,912bits

Bus
Address Data Control

Reset

Hard Disk
Framebuffer
Super I/O
Sound Card
@@ &

Processor (CPU): executes programs.
Memory: stores both programs & data.
Devices: for input and output.

Bus: transfers information.

@ OS Fdns Part 1: Computer Organisation — Anatomy of a Computer

Memory Hierarchy

CPU
Cache (SRAM)
Main Memor:

< Execution | o Data g a emo y
in Unit - el Cache =}
5 g 64MB
@ E DRAM
R g
éb Control | Instruction 2

Uni -

nit Cache :n_ 212K ROM
Address |

Data

Control

Bus

Use cache between main memory and register: try
to hide delay in accessing (relatively) slow DRAM.

Cache made from faster SRAM:

— more expensive, so much smaller
— holds copy of subset of main memory.

Split of instruction and data at cache level =
“Harvard” architecture.

Cache + CPU interface uses a custom bus.

Today have ~ 512KB cache, ~ 128MB RAM.

@ OS Fdns Part 1: Computer Organisation — Anatomy of a Computer

The Fetch-Execute Cycle Execution Unit

Register File

setect TR i

Control Unit

Soice

TS 4R e Execution

sotec . L oc
destinaiio:n#Rd —p Unit

register

select EU F'N
functional unit

H memory addressl data to/from memory (cache)
[temep- memory address of operand (if any)

| @y operand data (if any)

Register File

e The “calculator” part of the processor.
o A special register called PC holds a memory
address; on reset, initialised to 0.

e Then:

o Broken into parts (functional units), e.g.
— Arithmetic Logic Unit (ALU).

— Shifter/Rotator.

1. Inst.ructi_on fetci_zed from memory address held in — Multiplier.

PC into instruction b_ufFer (IB). _ Divider.
2. _ControI_Unlt determines what to do: decodes — Memory Access Unit (MAU).

Instruction. .

. . . . — Branch Unit.

3. Execution Unit executes instruction.
4. PC updated, and back to Step 1. e Choice of functional unit determined by signals

. from control unit.
o Continues pretty much forever. . .

@ OS Fdns Part 1: Computer Organisation — Central Processing Unit 9 @ OS Fdns Part 1: Computer Organisation — Central Processing Unit 10
Arithmetic Logic Unit Number Representation
00002 | O16 || 01102 | 616 1100, Cis
An N-bit ALU 00012 116 01112 716 11012 Dlﬁ
Function k/ 00102 216 10002 816 11102 Elﬁ
Code Carry In 00112 316 10012 916 11112 Flﬁ
01002 | 416 || 10102 | Ay || 100002 | 1046
01012 | 516 1011, | Bsg 10001, | 1146

output (d)

[]

a n-bit register b, _1b,_o...b1bg can represent 2"

different values.

o Call b,_1 the most significant bit (msb), by the
least significant bit (Isb).

e Unsigned numbers: treat the obvious way, i.e.

e Inputs from register file; output to register file. val = b, 12" 1 4+ b, 0272 4 - 4 5121 + 520,
eg 1101, =234224+20=8444+1=13.

o Represents values from 0 to 2™ — 1 inclusive.

Carry Out

e Part of the execution unit.

e Performs simple two-operand functions:

—a+b

—a-b e For large numbers, binary is unwieldy: use
— 2 AND b hexadecimal (base 16).

— aORb e To convert, group bits into groups of 4, e.g.
— etc. 11111010102 = 0011|1110]|10102 = 3E Ase.

. . . e Often use "0z" prefix to denote hex, e.g. 02107.
o Typically perform all possible functions; use

function code to select (mux) output e Can use dot to separate large numbers into 16-bit

chunks, e.g. 0z3FF.FFFF.

@ OS Fdns Part 1: Computer Organisation — Arithmetic and Logical Operations 11 @ OS Fdns Part 1: Computer Organisation — Arithmetic and Logical Operations 12

Number Representation (2)

o What about signed numbers? Two main options:

e Sign & magnitude:

— top (leftmost) bit flags if negative; remaining
bits make value.

— e.g. byte 100110115 — —00110115 = —27.

— represents range —(2"1 — 1) to +(2""! — 1)

e 2's complement:

— to get —x from x, invert every bit and add 1.
— e.g. +27 = 00011011, =
—27 = (111001002 + 1) = 111001015.
— treat 1000...0005 as —2" 1.
— represents range —2" ! to +(2""1 — 1)

e Note:

— in both cases, top-bit=1 means “negative”.

e In practice, all modern computers use 2's
complement. . .

@ OS Fdns Part 1: Computer Organisation — Arithmetic and Logical Operations

Unsigned Arithmetic

Coue=Cs Cq C3 C, Cy Co=Cin
(0) (0) (1) (1) (0) (0)
0 0 1 1 1
+ |o 0 1 1 0

o (we use 5-bit registers for simplicity)

o Unsigned addition: C,, means “carry”:

00101 5 11110 30
+ 00111 7 + 00111 7
0 01100 12 1 00101 5

e Unsigned subtraction: C,, means “borrow”:

11110 30 00111 7
+ 00101 -27 + 10110 -10
1 00011 3 0 11101 29

@ OS Fdns Part 1: Computer Organisation — Arithmetic and Logical Operations

Number Representation (3)

signed integers (e.g. n=>5)
range -16 to +15, —(2" 1) to +(2" "1 - 1)

10000,
10001,
10010,
11101,
11110,
11111,
000002

00001,
000102

01110,
01111,

recall unsigned integers range, 0 to 31, 0 to 2" — 1

—1610
—1510
—1449

—310
—219
—110
010
+110
+210

+1440
+1510

13 @ OS Fdns Part 1: Computer Organisation — Arithmetic and Logical Operations

e In signed arithmetic, carry no good on its own.

Signed Arithmetic

Use the overflow flag, V = (Cp,® Cy_1).

e Also have negative flag, N = b, (i.e. the msb).

o Signed addition:

00101 5 01010 10
+ 00111 7 + 00111 7
0 01100 12 0 10001 -15
0 1

e Signed subtraction:

01010 10 10110 -10
+ 11001 -7 + 10110 -10
1 00011 3 1 01100 12
1 0

14

o Note that in overflow cases the sign of the result is
always wrong (i.e. the N bit is inverted).

15 @ OS Fdns Part 1: Computer Organisation — Arithmetic and Logical Operations

16

Arithmetic & Logical Instructions

e Some common ALU instructions are:

Mnemonic C/Java Equivalent
and d < a,b d =a& b;
xor d< a,b d =a " b;
bis d<+ a,b d=al b;
bic d<a,b d=ak& ("b);
add d<+ a,b d =a+ b;
sub d <+ a,b d =a - b;
rsb d<+ a,b d=D>b - a;
shl d<+ a,b d = a << b;
shr d<+ a,b d = a > b;

Both d and a must be registers; b can be a register
or a (small) constant.

e Typically also have addc and subc, which handle
carry or borrow (for multi-precision arithmetic), e.g.
add d0, a0, bO // compute "low" part.
addc d1, al, bl // compute "high" part.
e May also get:

— Arithmetic shifts: asr and as1(?)
— Rotates: ror and rol.

@ OS Fdns Part 1: Computer Organisation — Arithmetic and Logical Operations 17

Condition Codes

Suffix Meaning Flags

EQ, Z Equal, zero Z ==

NE, NZ Not equal, non-zero Z ==

MI Negative N ==

PL Positive (incl. zero) N ==

CS, HS Carry, higher or same (' ==

CC, LO No carry, lower C ==

Vs Overflow V ==

VC No overflow V ==

HI Higher C==1&& 7 ==
LS Lower or same =01| Z==
GE Greater than or equal =V

GT Greater than N =V && 7 ==
LT Less than N =V

LE Less than or equal N1=V || Z==

e HS, L0, etc. used for unsigned comparisons (recall
that C' means “borrow™).

e GE, LT, etc. used for signed comparisons: check

both NV and V so always works.

@ OS Fdns Part 1: Computer Organisation — Conditional Execution 19

Conditional Execution

e Seen C,N,V; add Z (zero), logical NOR of all bits

in output.

Can predicate execution based on (some
combination) of flags, e.g.

sub d, a, b // compute d = a - b
beq procl // if equal, goto procl
br proc2 // otherwise goto proc2

Java equivalent approximately:

if (a==b) procl() else proc2();
On most computers, mainly limited to branches.
On ARM (and |A64), everything conditional, e.g.

sub d, a, b # compute d = a - b
moveq d, #5 # if equal, d = 5;
movne d, #7 # otherwise d = 7;

Java equivi d = (a==b) ? 5 : 7;

“Silent” versions useful when don't really want
result, e.g. tst, teq, cmp.

@ OS Fdns Part 1: Computer Organisation — Conditional Execution 18

Loads & Stores

Have variable sized values, e.g. bytes (8-bits),
halfwords (16-bits), words (32-bits) and longwords
(64-bits).

Load or store instructions usually have a suffix to

determine the size, e.g. ‘b’ for byte, ‘w’ for word,
‘1' for longword.

When storing > 1 byte, have two main options: big
endian and little endian; e.g. storing word
OxDEADBEEF into memory at address 0x4.

Big Endian
L[[[os[acsefes] |

00 01 02 03 04 05 06 07 08

NS EEEET]

Little Endian

If read back a byte from address 0x4, get OxDE if
big-endian, or OxEF if little-endian.

Today have x86 & Alpha little endian; Sparc &
68K, big endian; Mips & ARM either.

® OS Fdns Part 1: Computer Organisation — Memory (CPU point of view) 20

Addressing Modes

e An addressing mode tells the computer where the
data for an instruction is to come from.

o Get a wide variety, e.g.

Register: add
Immediate: add
PC Relative: beq

Register Indirect: ldr
" + Displacement: str

rl, r2, r3
rl, r2, #25
0x20

r1, [r2]

rl, [r2, #8]

Indexed: movl rl, (r2, r3)
Absolute/Direct: movl ril, $0xF1EA0130
Memory Indirect: addl ri, ($0xF1EA0130)

e Most modern machines are load/store = only

support first five:

— allow at most one memory ref per instruction
— (there are very good reasons for this)

o Note that CPU generally doesn't care what is
being held within the memory.

e i.e. up to programmer to interpret whether data is
an integer, a pixel or a few characters in a novel.

® OS Fdns Part 1: Computer Organisation — Memory (CPU point of view) 21

Floating Point (1)

e In many cases want to deal with very large or very

small numbers.

e Use idea of “scientific notation”, e.g. n = m x 10¢

— m is called the mantissa
— e is called the exponent.

e.g. C =3.01 x 10® m/s.

e For computers, use binary i.e. n = m x 2¢, where

m includes a “binary point”.

e Both m and e can be positive or negative; typically

— sign of mantissa given by an additional sign bit.
— exponent is stored in a biased (excess) format.

the bias.

use n = (—1)%m x 2 where 0 < m < 2 and b is

e e.g. 4-bit mantissa & 3-bit bias-3 exponent allows
positive range [0.0015 x 273, 1.1115 x 24]

= [RE), ()16], 0r [5, 30]

® OS Fdns Part 1: Computer Organisation — Memory (Programmer’s Point of View) 23

Representing Text

e Two main standards:

1. ASCII: 7-bit code holding (English) letters,

2. Unicode: 16-bit code supporting practically all

e ASCII default on many operating systems, and on
the early Internet (e.g. e-mail).

e Unicode becoming more popular (esp UTF-8).

e In both cases, represent in memory as either
strings or arrays: e.g. Pub Time!

® OS Fdns Part 1:

numbers, punctuation and a few other

character

S.

international alphabets and symbols.

(little endian)

String
SP P
Pty
A A A\ AJ
20 | 62 | 75 | 50
65 | 6D | 69 | 54
xx | xx | 00 | 21
nl.lll

<4

Array

copnt

[]

0 | 00 | 09

69

54 | 20 | 62

XX

21 | 65 | 6D

Computer Organisation — Memory (Programmer’s Point of View)

Floating Point (2)

e In practice use IEEE floating point with
normalised mantissa m = 1l.zx ... 2o
= use n = (—1)*((1 +m) x 2¢79),

o Both single (float) and double (double)
precision:

Bias-1023

6362

3130 23[22

0

‘ S ‘ Exponent(s)‘ Mantissa (23) ‘

Bias-127

52/51

‘S‘ Exponent (11) ‘

Mantissa (52)

o |IEEE fp reserves e = 0 and e = max:

+0 (1): both e and m, zero.

+00 : e = max, m zero.

NaNs : e = max, m non-zero.

denorms :

e = 0, m non-zero

22

o Normal positive range [27126, ~ 2128] for single, or
[2-1022 . 91024)
b}

o NB: still only 232/264 values — just spread out.

® OS Fdns Part 1: Computer Organisation — Memory (Programmer’s Point of View)

for double.

24

Data Structures

e Records / structures: each field stored as an offset

from a base address.

e Variable size structures: explicitly store addresses
(pointers) inside structure, e.g.

datatype rec = node of int * int * rec
| leaf of int;

val example = node(4, 5, node(6, 7, leaf(8)));

for example above stored at address 0x1000:

Address | Value Comment
0x0F30 | OxFFFF | Constructor tag for a leaf

0x0F34 | 8 Integer 8

0xOF3C | OxFFFE | Constructor tag for a node
0x0F40 | 6 Integer 6
0x0F44 | 7 Integer 7
0xOF48 | 0xOF30 | Base address of inner node

0x1000 | OxFFFE | Constructor tag for a node
0x1004 | 4 Integer 4
0x1008 | 5 Integer 5
0x100C | 0xOF3C | Base address of inner node

® OS Fdns Part 1: Computer Organisation — Memory (Programmer’s Point of View)

Fetch-Execute Cycle Revisited

Control Unit

Execution Unit

| Register File |

1. CU fetches & decodes instruction and generates
(a) control signals and (b) operand information.

2. Inside EU, control signals select functional unit
(“instruction class”) and operation.

3. If ALU, then read one or two registers, perform
operation, and (probably) write back result.

25

4. If BU, test condition and (maybe) add value to PC.

5. If MAU, generate address (“addressing mode”)
and use bus to read/write value.

6. Repeat ad infinitum.

@ OS Fdns Part 1: Computer Organisation — Fetch-Execute Cycle Revisited

27

Instruction Encoding

An instruction comprises:

— an opcode: specify what to do.
— zero or more operands: where to get/put values

e.g. add r1, r2, r3 E| 1010111 | oot | 010 | 011 |

Old machines (and x86) use variable length
encoding motivated by low code density.

Most modern machines use fixed length encoding
for simplicity. e.g. ARM ALU operations.

31 28|272625|24 21120]19 16[15 1211 0

‘Cond 00| I|Opcode | S| Ra Rd Operand 2 ‘

and ri13, ri13, #31 = 0xe20dd01f =

| 1110 | 00 | 1 | 0000 | [| 1101 | 1101 | 000000011111 |

bic r3, r3, r2 = 0xelc33002 =

| 1110 | 00 | 0 | 1110 | [| 0011 | 0011 | 000000000010 |

cmp rl, r2 = 0xel510002 =

| 1110 | 00 | 0 | 1010 | 1 | 0001 | 0000 | 000000000010 |

® OS Fdns Part 1: Computer Organisation — Memory (Programmer's Point of View) 26

Input/Output Devices

Devices connected to processor via a bus (e.g. ISA,
PCl, AGP).

Includes a wide range:

— Mouse,
Keyboard,
Graphics Card,
Sound card,
Floppy drive,
Hard-Disk,
CD-Rom,
Network card,
Printer,

— Modem

— etc.

Often two or more stages involved (e.g. IDE, SCSI,
RS-232, Centronics, etc.)

@ OS Fdns Part 1: Computer Organisation — 1/O Devices 28

UARTSs

—| A0 2] [—— Serial Output

S| D [0: 7] |Je——— Serial Input
Baud

r/w »>| read/write Rate

/cs Q| chip select Generator

Universal Asynchronous Receiver/Transmitter:

— stores 1 or more bytes internally.
— converts parallel to serial.
— outputs according to RS-232.

Various baud rates (e.g. 1,200 — 115,200)

Slow and simple. . . and very useful.

Make up “serial ports” on PC.

(for modems).

® OS Fdns Part 1: Computer Organisation — 1/O Devices

Hard Disks (2)

e arms move together - address a cylinder
e heads “float” - sealed unit else head crashes

e to read or write
move heads to cylinder (SEEK)
wait for sector (rotational LATENCY)
activate relevant head and transfer data

e can take 10s of ms if seek needed
transfer rate about 10Mbytes/sec

e modern disks may have
processor (disk controller)
cache memory
use scatter-gather (batch of requests for blocks)

® OS Fdns Part 1: Computer Organisation — 1/O Devices

Max throughput ~ 14.4KBytes; variants up to 56K

29

31

Hard Disks

actuator

spindle

read-write

e Whirling bits of (magnetized) metal. . .
e Rotate 3,600 — 7,200 times a minute.
o Capacity ~ 40 GBytes (=~ 40 x 23%ytes).

® OS Fdns Part 1: Computer Organisation — 1/O Devices

Graphics Cards

Framebuffer

Jrom CPU VRAM/ Got,
. SDRAM/ B
. SGRAM sync | .
vsync ‘10 Monitor
| l >—"Red
d 1 RAMDAC >f—* Green
1 1 >f—>Blue
o Graphics
* PCl/ S
CAGP Processor

o Essentially some RAM (framebuffer) and some
digital-to-analogue circuitry (RAMDAC).

o RAM holds array of pizels: picture elements.

o Resolutions e.g. 640x480, 800x600, 1024x768,
1280x1024, 1600x1200.

e Depths: 8-bit (LUT), 16-bit (RGB=555, 24-bit
(RGB=888), 32-bit (RGBA=888).

e Memory requirement = z x yx depth, e.g.
1024x768 @ 16bpp needs 1536KB.

= full-screen 50Hz video requires 7.5MBytes/s (or
60Mbits/s).

® OS Fdns Part 1: Computer Organisation — 1/O Devices

30

32

Buses

ADDRESS

Processor | pars Memory

CONTROL

Other Devices

e Bus = collection of shared communication wires:

low cost.
versatile / extensible.

) 4 potential bottle-neck.

o Typically comprises address lines, data lines and
control lines (4 power/ground).

e Operates in a master-slave manner, e.g.

1. master decides to e.g. read some data.
master puts addr onto bus and asserts 'read’
slave reads addr from bus and retrieves data.
slave puts data onto bus.

master reads data from bus.

o~ wnN

@ OS Fdns Part 1: Computer Organisation — Buses, Interrupts and DMA 33

Interrupts

e Bus reads and writes are transaction based: CPU
requests something and waits until it happens.

e But e.g. reading a block of data from a hard-disk
takes ~ 2ms, which is ~ 1,000,000 clock cycles!

e Interrupts provide a way to decouple CPU
requests from device responses.

1. CPU uses bus to make a request (e.g. writes
some special values to a device).

2. Device goes off to get info.

. Meanwhile CPU continues doing other stuff.

4. When device finally has information, raises an
interrupt.

5. CPU uses bus to read info from device.

w

e When interrupt occurs, CPU selects handler, then
resumes using special instruction, e.g.

0x0020: ...
0x184c: add r0, r0, #8 0x0024: <do stuff>
0x1850: sub rl, x5, r6 ~/ |-

0x0038: €

r

0x1854: 1dr r0, [r0]]
rl, r0

0x1858: and rl,

@ OS Fdns Part 1: Computer Organisation — Buses, Interrupts and DMA 35

Bus Hierarchy

Processor Memory Bus (100Mhz)

Bus
64MByte
DIMM
64MByte
DIMM |
| Bridge
Framebuffer
ISA Bus (8Mhz)

‘ PCI Bus (33Mhz)

Processor

Caches

| Bridge |

{
SCSI

Controller

Sound
Card

e In practice, have lots of different buses with
different characteristics e.g. data width, max
#devices, max length.

e Most buses are synchronous (share clock signal).

@ OS Fdns Part 1: Computer Organisation — Buses, Interrupts and DMA 34

Interrupts (2)
e Interrupt lines (~ 4 — 8) are part of the bus.
e Often only 1 or 2 pins on chip = need to encode.

e e.g. ISA bus (8 lines) & x86:

Processor
U [« IR0
—— INT E |¢———— IR1
—_— |[¢———— IR2
Intel [INTA —> @ 1IR3
oy [— R4
Clone o e
le— D[0:7]— N le—— IR6
® le———— IR7

. Device asserts IRx.

. PIC encoder asserts INT.

. When CPU can take interrupt, strobes INTA.

. PIC sends interrupt number on D[0:7].

. CPU uses number to index (“vector”) into a
table in memory which holds the addresses of
the handlers of every interrupt.

6. CPU saves (some) registers and jumps to

handler.

Gl A W N =

@ OS Fdns Part 1: Computer Organisation — Buses, Interrupts and DMA 36

Direct Memory Access (DMA)

a DMA device can read and write processor
memory directly.

e A generic DMA “command” might include

source address

source increment / decrement / do nothing
sink address

sink increment / decrement / do nothing
— transfer size

o Get one interrupt at end of data transfer

o DMA channels may be provided by devices
themselves:

— e.g. a disk controller
— pass disk address, memory address and size
— give instruction to read or write

e Also get “stand-alone” programmable DMA
controllers.

@ OS Fdns Part 1: Computer Organisation — Buses, Interrupts and DMA

Summary of Part 1

o Computers made up of four main parts:

1. Processor (including register file, control unit

and execution unit),
2. Memory (caches, RAM, ROM),
3. Devices (disks, graphics cards, etc.), and
4. Buses (interrupts, DMA).

e Information represented in all sorts of formats:

— signed & unsigned integers,
— strings,

— floating point,

— data structures,

— instructions.

e Can (hopefully) understand all of these at some

level, but gets pretty complex.

= to be able to actually use a computer, need an

operating system.

@ OS Fdns Part 1: Computer Organisation — Summary

37

39

Hardware used by OS (for Part 2)

e the interrupt mechanism for entry into OS:

— hardware transfer of control to interrupt service
routine (ISR) - *in the OS*, including processor
state saving (PC, PSR, other registers ...)

— an instruction to return from
interrupt/exception, including restoring of saved
processor state

instructions which cause “software
interrupts” /exceptions so cause transfer into an
ISR - *in the OS*,

e timers - peripherals which are used to interrupt as

programmed

processor status register(PSR) including a bit to
indicate:

— user mode (unprivileged mode)
— system mode (privileged mode)

@ OS Fdns Part 1: Computer Organisation — Summary 38

